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FOR AN UNDEPRESSED MATCHED BEAM
IN A QUADRUPOLE DOUBLET CHANNEL ∗

O. A. Anderson, LBNL, Berkeley, CA 94720, USA
L. L. LoDestro, LLNL, Livermore, CA 94551, USA

Abstract
In 1958, Courant and Snyder analyzed the problem of

alternating-gradient beam transport and treated a model
without focusing gaps or space charge. Recently we
revisited their work and found the exact solution for
matched-beam envelopes in a linear quadrupole lattice
[O.A. Anderson and L.L. LoDestro, Phys. Rev. ST Ac-
cel. Beams, 2009]. We extend that work here to include
the effect of asymmetric drift spaces. We derive the so-
lution and show exact envelopes for the first two solution
bands and the peak envelope excursions as a function of the
phase advance σ up to 360◦. In the second stable band, de-
creased occupancy requires higher focusing strength. For
symmetric gaps, this accentuates the remarkable compres-
sion effect predicted for the FD (gapless) model.

INTRODUCTION
In their classic paper, Courant and Snyder [1] studied the

beam-envelope dynamics of a circular machine with neg-
ligible space charge, piecewise constant focusing, and no
drift spaces (focusing gaps); they used an expansion in fo-
cusing strength to obtain an approximate solution for the
matched envelope. The same case, but for a straight ma-
chine, was recently analyzed and an exact solution was ob-
tained [2]. In the present paper we extend that recent anal-
ysis to include asymmetric focusing gaps, still assuming
negligible space charge. Of course, particular cases with
asymmetric gaps have long been studied via computer sim-
ulations; numerical examples with space charge are found
in Refs. [3] and [4]. The motivations for finding the exact
analytic envelope solution are: (1) performing parametric
studies and studying the properties of the solutions such
as extrema, limits, etc.; (2) facilitating study of envelope
functions in the higher solution bands, where approxima-
tion methods fail and simulations become difficult. In par-
ticular, we are interested in the effect of drift spaces and
asymmmetry on the remarkable second-band beam com-
pression effect previously reported for the FD case [2].

Instead of solving the envelope equations directly, as we
did in Ref. [2], we use here the linear single-particle equa-
tions and the phase-amplitude method to get the exact enve-
lope functions and phase advances. To indicate briefly that,
in our model, the periodic lattice of quadrupole doublets
has piecewise-constant focusing but may have unequal gap
lengths, we introduce the abbreviation FoDO.
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FOCUSING MODEL
We assume a focusing function κ(z) that is periodic over

a lattice with period 2L, so that κ(z + 2L) = κ(z). We
take κ(z) to be piecewise constant with value +κmax in
the focus and −κmax in the defocus sections, which have
equal length. For convenience throughout, we define

k ≡
√

κmax . (1)

Our FoDO model is then described for the xz-plane by
Eqs. (2) and Fig. 1:

κ(z) ≡


+k2, 0 < z < ηL;
0 , ηL < z < ηL + d1;
−k2, ηL + d1 < z < 2ηL + d1;
0 , 2L− d2 < z < 2L.

(2)
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Figure 1: Model for xz-plane in one cell of a periodic
FoDO lattice. The quadrupoles have equal lengths ηL; gap
lengths are d1 and d2. The cell starts at z = 0 with κ > 0
(focus). The yz-plane field map is the same but inverted.

Since the FoDO lattice cell (Fig. 1) has equal focus and de-
focus lengths, the fields have antisymmetry about each gap
center. For a matched beam, this yields a relationship be-
tween the envelopes a(z) and b(z) in the xz and yz planes,
respectively. One finds that

b(z) = a(2zc − z), (3)

where zc is the center of any gap. Therefore, we only need
to analyze a(z) in what follows.

DEFINITIONS
We define the gap asymmetry parameter

µ ≡ d2 − d1

2d
, (4)

where

d ≡ d2 + d1

2
= (1− η)L (5)

so that
d1 = d(1− µ), d2 = d(1 + µ). (6)
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The normalized gap lengths are

ν ≡ kd = k(1− η)L = 1−η
η ϕ, (7)

ν1 ≡ kd1 = ν(1− µ), (8)
ν2 ≡ kd2 = ν(1 + µ). (9)

The focusing strength parameter, used throughout this pa-
per, is defined by

ϕ ≡ ηkL. (10)

We introduce the following quantities that depend on this
parameter:

sn ≡ sinϕ, cs ≡ cos ϕ,

sh ≡ sinhϕ, ch ≡ coshϕ. (11)

In the limit η→1, sn, cs, sh, and ch become identical with
the functions defined in Ref. [2].

MATCHED BEAM ENVELOPES
For a beam with emittance ∈, negligible space charge,

and arbitrary periodic focus function f(z), the xz-plane en-
velope function a(z) is determined by [5]:

a(z)′′ + f(z)a− ∈2

a3
= 0 (12)

along with initial or periodic conditions for x and y. We
assume ∈x = ∈y = ∈. Without space charge, the beam
distribution may be KV or a class of physically realistic
distributions.

For a matched beam without space charge, it is unnec-
essary to solve the nonlinear equation (12) directly. In-
stead, we find the envelopes [6] using the phase-amplitude
method [1], [4], which yields the result

1
∈

a2(z) =
M12(z)

P
√

1− ( 1
2TrM)2

, (13)

with
P(ϕ) ≡ sign(sinϕ). (14)

The function P provides the correct sign for the radical for
any phase advance [2].

The matrix M is obtained by multiplying the transfer
matrices for the segments of a lattice cell. In the case of a
FoDO cell, these segments—taken in the order of Fig. 1—
have transfer matrices [1], [7]

MF =
(

cs 1
k sn

−k sn cs

)
, MO1 =

(
1 d1

0 1

)
,

MD =
(

ch 1
k sh

k sh ch

)
, MO2 =

(
1 d2

0 1

)
.

The matrix for the entire cell, starting at z = 0 in Fig. 1, is

M(0) = M(2L) = MO2MDMO1MF . (15)

The ranges of z for the four individual segments are indi-
cated in Fig. 1, namely, ηL, d1, ηL, and d2. If z 6= 0 but,
for example, z lies within the first segment, then ηL and
MF split into ranges z and ηL− z as seen in Eq. (20).

Stability and Phase Advance σ

A single-particle orbit is stable if 2 cos σ = |TrM| < 2
[1]. We calculate the trace from M(0) = MIIIMF where

MIII ≡ MO2MDMO1 =

 A1
2B+sh

k

k sh A2

, (16)

A1 ≡ ch + ν2 sh, A2 ≡ ch + ν1 sh, (17)

B ≡ ν ch +
1− µ2

2
ν2sh. (18)

Then

cos σ =
M11 + M22

2
= (ch + ν sh)cs−B sn (19)

gives the phase advance, which agrees with the result given
by Lund and Bukh [3]. The envelope solution will be stable
for all values of ϕ for which the right-hand side of Eq. (19)
lies within the range [−1, 1]. Such regions of ϕ or kL are
referred to as pass bands. Reference [2] shows how these
bands are related to the branches of cos σ.
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Figure 2: (a) Phase advance from Eq. (19) for the first two
stable bands. (b) Band 2 with the kL axis magnified.

Exact Matched Beam Envelopes
For an arbitrary point z in the first (focus) segment, the

transfer matrix is obtained from MIII after pre- and post-
multiplying by the two subunits of MF referred to above.

Mf(z) =

(
cos kz 1

k sin kz

−k sin kz cos kz

)
MIII ×(

cos k(ηL−z) 1
k sin k(ηL−z)

−k sin k(ηL−z) cos k(ηL−z)

)
. (20)

The superscript “f” means that z is restricted here to the
focusing segment. We define F (ϕ, z) ≡ kMf

12 and find,
with Eqs. (13) and (19), the exact focus-segment envelope:

a2(ϕ, z) = ∈ηL
F (ϕ, z)

Pϕ
√

1− ( 1
2TrM)2

(21)

F (ϕ, z) = (ch + ν sh)sn + µν sh sin[ϕ(1−2z/ηL)]
+ B cs + (B + sh) cos[ϕ(1−2z/ηL)]. (22)

There is no space here to present the exact solutions for all
four segments—see Ref. [6]. Instead, we show the result
for a complete cell graphically in Figs. 3 and 4. The lattice
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Figure 3: Envelope anorm ≡ a(z)/
√
∈L from Eq. (21) and

Ref. [6]. Focus parameter kL = 0.60565π gives σ = 80◦.
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Figure 4: Same as Fig. 3 but with focus parameter kL =
2.41027π; σ = 270◦, the middle of the second pass band.

parameters are η = 0.5, µ = 0.8, with phase advances σ =
80◦ and σ = 270◦, respectively. Figure 3 uses the same
parameters as in a numerical example by Lund et al. [4].
Our first-band envelopes are very like theirs (which include
some space charge), but somewhat more compressed.

In the figures, a(z) was obtained from our exact results,
while b(z) simply used Eq. (3). The origin has been shifted
from that in Fig. 1. It is placed at the center of the second
drift space in order to display the matched-beam symmetry
described earlier.

Other Topics: peak excursion, beam compression
The peak value of the envelope determines whether the

beam can pass through a given channel. There is an opti-
mum value of the focus strength for each pass band, as seen
in Fig. 5.
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Figure 5: Peak envelope values taken from Ref. [6]. Same
η and µ as in Figs. 2, 3, and 4. (a) First two stable bands.
(b) Second band magnified.

Beam compression in even bands is due to envelope min-
ima in the xz and yz planes occurring at or near the same
z. Ref. [2] shows that the effect becomes extreme near the
outer band edge (but it notes that caveats apply). The ef-
fect is even larger when there are drift spaces because the
focusing strength must be increased. For η = 0.5, µ = 0.0,
and σ = 356.75, the area compression ratio is 1.17× 106.
However, if the asymmetry parameter µ is finite, the xz and
yz compression points become separated and, for µ = 0.8
(Fig. 6), the area compression ratio is only 7× 104.
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Figure 6: Normalized a(z), b(z), and An(z) ≡ πab near
outer edge of band 2: kL = 2.41361π; σ = 356.6◦. The
beam compression (7 × 104) is reduced because the gaps
have unequal length and the a(z) and b(z) minima do not
coincide—see text.
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